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Abstract 

We study numerically the renormalization group equations for the 

Higgs potential of the two doublet model assuming perturbative 

unification and sufficiently large initial quartic and Hlggs-Yukawa 

couplings such that the full nonlinearittes interplay. We obtain 

predictions for the physical Hlggs boson spectrum in the two doublet 

model up to systematic differences in fermion coupling schemes. 

Unambiguous predictions emerge only when there exists a heavy generation 

in which quarks couple to both doublets. In other cases we find that 

the potential can become quartically unstable at low energies for 

arbitrary initial stable values of the coupling COnStantS. 

?5 Operated by Unlverrltles Research Association Inc. under contract with the United States Department of Energy 
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I. Introduction 

If the breaking of the electroweak symmetries proceeds by way of 

elementary scalar fields and if one may presume perturbative unification 

at some large scale, MX, then there are rather stringent conditions 

which must be met by the Higgs boson masses and fermion masses in 

various extensions of the standard model. These results are dictated by 

the renormalization group evolution of the various coupling COnStantS in 

the theory. Furthermore, random initial values of coupling constants at 

MX can be driven to universal low energy values at MW. The Higgs bosons 

in multiple Higgs doublet generalizations of~the standard model can have 

predictable masses up to the unknown vacuum expectation value PatiOS in 

the presence of heavy families of fermions. Moreover, even 

perturbatively weak initial values of the Higgs boson quartic coupling 

constants are driven to these fixed points by large fermion Yukawa 

couplings. Indeed, if one wants to “naturally” ensure a finite Higgs 

quartic interaction system for all scales below My (and random initial 

values 1 then we find that the theory only makes sense if there do exist 

heavy families. 

We examine the two doublet model in detail. Here there is a 

further question: why does the two-doublet model lead to a breaking Of 

the SU(Z)xU(l) symmetry which maintains conservation of the electric 

charge? This is a statement about the vacuum expectation value 

alignment of the two doublets: they must go into a “ferromagnetic” 

alignment to maintain a residual U(l)EM. Remarkably, in the cases in 

which the Higgs couplings are driven to fixed points we find that the 

ferromagnetic solution necessarily occurs. Hence, this approach offers 

a natural solution to the question of why electromagnetism iS realised 
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in the exact symmetry mode. 

Unfortunately, without large Higgs-Yukawa couplings in the theory 

we can say almost nothing about the exact values of the Hlggs boson 

masses. We find only that they tend to be small, i.e., less than 200 

Gev in all cases and possibly accessible to the Tevatron. However, the 

stabilization of the evolution due to heavy fermions iS compelling in 

itself so we have chosen to study this possibility in detail here. We 

shall also give a discussion of the leS.3 predictive cases in which no 

heavy fermions are involved. 

There are familiar bounds on Higgs masses and Higgs-Yukawa coupling 

constants in the standard model (l-4). Many of these follow strictly from 

the renormalization group and the assumption of the existence of a 

desert over which finiteness of couplings must be maintained up to some 

“unification” scale, MY. Pendleton and ROSS(~) first suggested that 

fermion masses and Higgs masses may be determined by the fixed points of 

the renormalization group equations. Subsequently, the physical nature 

of such fixed points was discussed and various 1mpliCatiOnS were 

givenc3), such as the mass predictions for a fourth generation and KJI 

angles(‘). These ideas have been further developed recently (5) mixing 

and applied to model building in an interesting way (6) and are essential 

to a complete understanding of unified theories involving large initial 

coupling constants (by large couplings we do not mean the saturation Of 

unitarity bounds, g2- nil , but rather g* “of order unity”). 

Our present study is essentially numerical, but we believe exhausts 

the list of qualitative phenomena which can occur in any natural 

multiple Higgs boson generalization of the standard model. Here we do 

not attempt to treat the evolution of the Lagrangian mass parameters of 
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the Higgs fields. Since scalar field masses in the absence of chiral 

supermultiplets or as pseudogoldstone bosons are not multiplicatively 

renormalized, they are subject to large additive renormalizations of 

order M ‘. Hence, 

meaninglZ3sC7). 

the renormalization group logarithmic evolution is 

We opt presently to swap the unknown masses for unknown 

vacuum expectation value ratios and find general statements that are 

insensitive to the unknowns. A fixed point for us has a loose meaning; 

it is a physical result at low energies that is insensitive to initial 

conditions at high energies and reasonably insensitive to systematics. 

II. Renormalization Group Equations 

In this section we shall write down the one-loop renormalization 

group equations for a general class of models which are extensions of 

the Weinberg-Salam model to two complex Higgs doubleta and N standard 

generations of f ermions . We consider all possible coupling schemes of 

the fermions to the two Higgs doublets consistent with Clashow-Weinberg 

naturalness(8), i.e. the natural avoidance of off diagonal neutral 

couplings. Thus, we must ensure that no fermionic charge species couple 

to more than one Higgs doublet (but several fermionic charge species can 

couple to the same Higgs doublet). We furthermore assume throughout a 

negligible coupling to the neutrinos (hence our Ng > 4 analyses are 

strictly in some conflict with cosmological bounds, but V’s can be given 

finite yet small masses N 5 Cev which evade these limits and are 

negligible in the present context). 
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Since we are free to interchange the definitions of #, and #a we 

need only consider distinguishable coupling schemes module this 

permutation symmetry. Furthermore, we have found empirically that the 

difference in the evolution of up and down quark flavors (generically) 

due to the g, 2 coupling which breaks isospin is a net effect of order 

2%. Therefore, to a good approximation we may assume a u++d 

permutation symmetry and consider coupling schemes which are distinct 

module this symmetry (this is not ordinary isospin; the mass ma~trix iS 

diagonal and will in general break isospin via the Higgs-Yukawa 

couplings. But it is immaterial whether we call one quark “up” and 

another “down” up to 2% accuracy). 

If we consider now a given generation and assume that the u-quarks, 

d-quarks and charged leptons all receive large masses through large 

Higgs-Yukawa couplings we arrive at the following three distinguishable 

coupling schemes: 

+Hu 
i?<; 

61 t ; 

4 1 21 e % 1 (1) 

(1) OQ 
(Our notation implies, e.g., that for case I the Higgs-Yukawa coupling 

is: 
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&hd: + a,J?d,& ,+ c,ie,+, t R.c. (2) 

where QL and LL are, respectively, the left-handed quark and lepton 

doublets and uR, dFi’ and eR are the right-handed up-quarks, down-quarks 

and charged leptons. We suppress generation indices. The u , g and A 

are Yukawa coupling matrices.) 

If we assumO that there exist approximations in which certain or 

all of the fernionic charge species may have negligible masses then we 

arrive at the following additional cases: 

#/ d 
42 
Cm,1 

(1) 
24 

4 

\ 
d 

t2 

N1 

$I<,” 
+2 R 
m 2L (3) 

4 d 
4: 1 
m 

The most general renormalizable and SU(2)xU(l) invariant potential 

with two Higgs doublets and reflection symmetries is well known (9) and 

is given in equation (A. 1). 



--I- FERMILAB-Pub-85/56-T 

We now write down the renormalization group equations for a general 

model with parameters ak and Ki that can take on different values for 

each of the above coupling schemes. The renormalization group equations 

for a 2 Higgs doublet model with the coupling scheme I has been given 

previously(‘O) and has been studied in ref.(ll). We differ with the 

first of ref.(lO) on the evolution equations Of the ti and & Yukawa 

matrices, and we further require a more general form as given below. In 

the following equations g 
3' g2' and g, represent the SLJ(3), SU(2) and 

U(1) coupling constants respectively; &! , 8 and f represent the Yukawa 

matrices for the up type, down type and charged lepton species 

respectively. The hi (i-l ,..,5) are the scalar quartic couplings in 

the potential of eq.(A.l). We let N-(number of generations), Nr(number 

of Higgs doublets) and we define D- /LN*p+ : 

Da3 = - hjs3 ; n,= II-7 4t.i 

I>$ = - n,$ i q+- $I - $d” 

Dj, = + n,$ ; n,= q 
2od +$& 

(4a) 

(4b) 

(4c) 

and 

t 2 ‘T; (a,fZt+ 3a2dJf+ 305 UU’I 

(54 
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II& = -(f$ t +a: + +a?)& t +$dB t a, gU’9 

W) 

DU = - (8$ + +jt + s $)u + +4+u + Q&wld 
+ U TP I a,IPd+ t 34,, dL49’ t 3a,, UU’) (5~) 

and 

DA, = 12 A: + 4/\: + 4/l,& +z;\: t 2x2: 
-3A (3$+jY) t +g t $(a: t $1 

+4Jv rr( d,ff t 3&gjt t 30(, UU+) 

-4 ~rdxY+~2+ 3dS(dd+)2+ 3d‘(MUf)z] 

(64 

DA2 = 12 A: t 4,A: + 4A,A* t 2;1,2 + a: 

-3h,(3$+ $3 + $3.: + $t$ +gY 

+4h, Tr (cd, ;pB’ + 3d5 &St f 3q ccz’) 

- 4 T- [ u,c (d?)’ t 3 &I, ww 3a,z ( l4 U’I’J 

(W 

m, = 6% + &)h +.h) + 4Af t Zh: t zn: 

- 3Aj( 3g.: t $7 + +a; + $2; - 5$j12 

t 2h3 5 (43 it%’ + 3a;+&?@ + 3+ blP) 

- 12 &lb 5 (&$c$+h I.(+) (64 
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ah4 = 2Li,+n,)k + 4(2/\, +A,);\, + S.a: 
- 3h, (3f.i t fl’) t 3$f’ 
+ 2A,7-r ( C(,,otit + 3d,~&8f + 3% u”‘) 

t 12 420 Tr (aa’ UU’) (64 

DA, = A5 [ 2 (A,+ Az) t gh, + 12dr - 3 (3$ f $) 

+ 2 Tr ( Hz, ‘x2’ t 3ail A@+ + 3+ ~24 u’) 3 

(64 

The values Of n,, n 2 and n 
3 

in eq.(4) are given in Table I for the 

different cases we shall consider. The values of ai and “fj depend upon 

the coupling schemes and are given in Table II and Table III. 

The standard one Higgs doublet case is simply obtained by setting 

h &‘.A49 2* and ha to zero and choosing the appropriate values of n 
1 

through n3 and the ai in the first columns of Tables I and II. The 

appropriate renormalization group equations for each of the 10 coupling 

schemes in the 2 Higgs doublet case can be read off of the Tables. 
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III. Discussion of Results 

In this section we discuss the results of our numerical integration 

of the renormalization group equations. Our focus is on the scalar 

quartic couplings which determine the Higgs boson spectrum. In part A 

we discuss the results for the standard one doublet model. Part B 

contains the results of our study of two-Higgs doublet models. We shall 

see that the behavior of the 10 distinct coupling schemes can be divided 

into three classes of general results: (1) “non-leptonic” coupling, (2) 

“semi-leptonic” coupling and (3) “leptonic” coupling, depending upon how 

the doublets are coupled to the heavy fermions. We note that only class 

(1) exhibits fixed point behavior while class (3) can have diverging 

couplings at~low energies. 

In this analysis we integrate the renormalization group equations 

from My, which is chosen to be 10150ev throughout (a larger MX, say 

1017Gev, will not significantly affect these results), down to a weak 

interaction scale of 100 Gev. For simplicity we assume that the 

Cabibbo-KM coupling matrices are diagonal. This is reasonable in that 

in the large coupling limits these matrix elements are generally driven 

diagonal rapidly by the renormalization group evol”tion(4). Values of 

the gauge coup1 ings can be derived from their measured values at low 

energies. Ye take: g3=.56-g2; g,=.43, evaluated at MX. 

The light Permions (m < m top) have negligible effects on the 

evolution of the coupling constants, except for the counting in the 

usual gauge coupling beta-functions. We shall simply set the 

Higgs-Yukawa coupling constants of the light fermions to zero. 
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Fixed points of the scalar quartic couplings are universal values 

attained from a sample of random initial values. These fixed points 

will in general depend upon the coupling scheme employed and the number 

of heavy generations assumed; within a given scheme they are remarkably 

well-defined. These are physical, quasi-fixed points in the sense of 

reference (3). 

It is important that the hi at MX respect the stability conditions 

of eq.CA.4). If these do not hold then there is a direction in group 

space in which <+> and <G+~>:, can grow to decrease the vacuum energy 

without bound. 

This raises an interesting question: If we start wfth the A; 

respecting eq.cA.4) at MX and evolve down in energy can we ever reach a 

scale M’ at which the Ai fail to respect the stability conditions of 

eq.(A.4)? If so, then the scale M’ must be associated with the scale of 

a symmetry breaking. Presumably at M’ the <*> will begin to grow 

without bound until ($>- M’. This presumably drives the effective mass 

scale of the A; above M’ and the stability is recovered. Hence, this 

must correspond to a stable minimum with <4> - M’. 

This mechanism is not equivalent to Coleman-Weinberg symmetry 

breaking and can be strongly first order since the quadratic terms could 

define a stable minimum (it seems akin to the idea of “quantum 

resuscitation” of Dimopoulos and Georgi (12)). We shall find that this 

sort of phenomenon does occur in the leptonic coupling schemes described 

below. 
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(A) The Standard One Doublet Model 

Consider the standard model with three generations and a possible 

arbitrarily heavy t-quark. The vacuum expectation value of the neutral 

Higgs boson is determined, and thus given the quartic coupling the mass 

of the physical Higgs scalar is determined. 

In Fig.(l) we give the simultaneous evolution of the scalar quartic 

coupling, A , and the t-quark Yukawa coupling, gt, for arbitrary initials 

values. We see that for sufficiently large initial values of A and gt 

that they simultaneously approach a fixed point. For smaller initial gt 

the evolution terminates on the dashed line of Fig.(l). This can be 

turned into a relationship between the mass of the t-quark and that of 

the neutral scalar, which is presented in Fig.(2). Curiously, for a 

large range of mt we see that mu lies around 170 Gev. We note that if 

we allow for small h the criterion that it should not be negati Ye 

between MW and My gives a lower bound on mB (see for example ref.(l3)). 

There have been previous analyses of the Higgs boson maas involving 

the renormalization group and many attempts to place upper bounds on the 

ma33 of the Higgs scalar(“‘8). Pendleton and Rosa first suggested that 

the mass might be determined by infra-red fixed points of the 

renormalization group equations. However, we disagree with their 

prediction by a factor of approximately two since they assume the fixed 

point is the exact mathematical one, which is never reached by the 

decoupling scale of - 100 Gev. Another approach consists of 

integrating the renormalization group equations from MW to M and upper 
X 

(lower) bounds on h follow by requiring that it not be singular 

(negative) over the range of the desert(‘). The upper bounds will 

generally occur at the fixed point of the evolution. 
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If there is a heavy fourth generation, the ma33 of the Higgs boson 

increases. For example, mH lies between 200 and 220 Gev for mt between 

30 and 100 Gev in the presence of a heavy fourth generation. Contrary 

to the three generation case, mH decreases with increasing mt. However, 

mH increase3 with the mass of the heaviest fermion. This can be Seen 

from the renormalization group equation of A , for the fixed point of 

h increases if the Yukawa coupling of the heavy fermion is increased. 

(B) Two Higgs Doublet Models 

The qualitative behavior of the renormalization group evolution of 

the quartic couplings can be divided into three classes: 

(1) “Non-leptonic” coupling (scheme3 I and IV). Each doublet is 

coupled to at least.one heavy quark. 

(2) “Semi-leptonic” coupling (schemes II and V). One doublet is 

coupled to at least one heavy lepton (but no quarks) and the other 

doublet is coupled to at 13ast one heavy quark. 

(3) “Leptonic” coupling (schemes III, VI, VII, VIII, IX and X1. 

One or both Higgs doublets are not coupled to any heavy fermions. 

Our conclusion3 presently are based upon the study of the two Higgs 

doublet model, but we believe that this qualitative clas3ification will 

hold for any further generalization of the model. We note that two 

doublets saturate the “non-leptonic” schemes if natural off diagonal 

neutral coupling suppression is assumed. With three Higgs doublets one 

saturates the “semi-leptonic” schemes. Any further generalization will 

necessarily have doublet3 coupled to light objects (neutrinos) or no 

coupling to fermions at all and the wleptonic” mode will be realized. 
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Fixed points of the scalar quartic couplings, and hence definite 

predictions for the Hims masses, are obtained only for the 

“non-leptonic” schemes. The case with only three standard generations 

and no heavy fourth generation corresponds either to scheme VIII or X, 

depending upon how heavy the t-quark is. Thus, our results indicate 

that fixed point behavior will not occur in this case. 

We can understand why heavy quarks are necessary for the quartic 

couplings to reach fixed points by examining the structure of the 

renormalization group equations. Consider the extreme caSe in which no 

heavy fermion is coupled to either Higgs doublet (X). Consider then the 

renormalization group equation for A, (similarly A, ). It can be 

written as: 

-DA, = I2 L A, - T/(3$ + $)]’ t 24 t 2 (A, + 4 

•t 22 + #f2+ + 8;“) + $$$ (7) 

Note that the rhs is alWayS positive and thus no fixed point exists 

(zero is not a fixed point because the rhs is not proportional to A, ). 

A3 a result, A, (or ha 1 always decreases from its initial value at MX 

and can eventually exit the stability region becoming negative and 

eventually negative infinite. Coupling +, (or 4s ) to heavy fermions 

introduces the negative stabilizing term: 
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to the renormalization group equation, where at least one of the a’s is 

nonvanishing. In this case a fixed point can exist and be reached if 

the Yukawa CouplingS are sufficiently large. It is also clear that a 

heavy quark is more effective than a heavy lepton in driving the system 

toward a fixed point because of the color factor of three and the larger 

fixed point values of the quark Yukawa couplings. 

It is somewhat remarkable that a system of Yukawa and quartic 

coup1 ings can give rise to a pseudo-asymptotically free behavior at low 

energies. Of course, if the system is evolved above MY we would see all 

coupling3 diverging eventually, but at low energies as one or more 

coupling3 diverge they can drag the others along. Thus, with the theory 

defined at MX to be finite we have the possibility of the theory 

becoming non-perturbatively strong at the weak scale by these effects. 

This is reminiscent of technicolor and might be applied to generate the 

breaking of the weak interaction symmetries at low energies. 

In the semi-leptonic schemes the important stabilizing term, 

12 Tr(aat&Et), is absent from the rhs of the renormalization group 

equations for A3 and 1,. Consequently these couplings do not reach 

fixed points although h, and AZ do. 

We now discuss our results in the three classes of coupling 

schemes. 



-16- FERMILAB-Pub-85156-T 

(1) Nonleptonic Coupling (I and IV) 

The flow of the Ai toward fixed points is shown in Figures (3a,b 

and c) for coupling scheme I with N-4. The rate of approach is 

indicated by the solid circles; the distance between solid circles is 

one tenth of the logarithmic energy range between 1015Gev and 100 Cev. 

The fixed points are reached by about 80% of the running time from My, 

i.e., at a scale of 10 to 100 Tev, independent of initial values. Each 

of the Ai reach fixed points with the exception of X, . 

As is evident from eq.(6e) the fixed point for A, is zero. This 

fixed point corresponds to the Peccei-Quinn U(1) symmetry. However, A, 

never really attains zero in the finite running time and becomes 

sensitive to initial values. 

It is interesting to note in Fig.(jc) that h, reaches its fixed 

point (which is negative) for arbitrary initial values. Negative A, is 

essential for an electric charge conserving vacuum in which the two 

doublets are aligned in their vacuum expectation values (for positive 

&the vacuum energy is minimized by the counter-aligned configuration 

which corresponds to a broken electric charge and thus a massive 

photon). It is somewhat remarkable that the renormalization group fixed 

point for the two Higgs doublet model with a heavy fourth generation 

will select the physically interesting vacuum! 

Our numerical results for the fixed points of the Ai are 

summarized in Tables IV and V for coupling schemes I and IV. We have 

studied the cases of one and two heavy generations. For simplicity we 

take the Higgs-Yukawa couplings of the heavy generations to be equal at 

MX. Varying the initial values of the Yukawa couplings will modify the 

results by about 10% (assuming always large, i.e., greater than unity, 
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initial values). 

The fixed points are approached from a large sample of initial 

values of the Ai at MX. The errors quoted in the tables reflect the 

fact that not every set of initial values of the A’s attain the same 

fixed point in the finite running time from MX. Wherever these errors 

are not reported it means that they are negligible. These errors are 

generally rather small. Clearly A, has a large relative error because 

it has a fixed point of zero, yet in absolute magnitude this error is 

comparable to that of A,. 

The renormalization group equations respect the symmetry 

A,-‘-X,and the sign of h, can never change during the evolution. 

Hence we quote only the results for I&[. 

We have shown how the fixed points vary with the mass of the 

t-quark. In each case it is seen that there is essentially no 

difference between mt=O and mt=50 Gev, whereas a heavier t-quark tends 

to lower the magnitudes as well as the errors of the fixed points, 

Similar effects occur with the addition of extra heavy generations. 

Comparing Table IV with Table V we see that the fixed point for A, is 

about the same for both coupling schemes I and IV since #, is coupled 

to the same heavy u-quarks in both cases. The fixed point for AZ and 

consequently those for h, , X, and A5 are smaller in magnitude in 

scheme I because Q: is coupled to heavy leptons in addition to 

d-quarks. 

The masses of the physical Higgs bosons can be obtained from the 

fixed points by eq.(A.6a through d). These are displayed in Tables VI 

and VII. The masses of the neutral scalars depend upon the unknown 

ratio vB/v, of the vacuum expectation values of the two Higgs doublets. 
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They are plotted as a function of this ratio in Fig.(4a and b) for 

coupling schemes I and IV. It Is seen that these masses vary in a 

finite range as the vacuum expectation value ratio runs from 0 to P) . 

Since A5 never reaches its fixed point we cannot quote precise 

predictions for the neutral pseudoscalar; the values quoted in Tables VI 

and VII are obtained from the “mean values” of &i in Tables IV and V. 

It is evident, however, that this mass tends to be small. 

All of these masses lie in an interesting range which is accessible 

to experiment in the near future. 

(2) Semi-leptonic Coupling (II and V) 

In both these schemes & is coupled only to leptons. 

Qualitatively we find that A, approaches a stable fixed point while da 

has a larger variation in its value at 100 Gev (this variation is 

controlled by the magnitude of the lepton Yukawa couplings and can be 

made small for large Yukawa couplings at MX). A, , & , and As are 

driven small, but do not reach fixed points. Just as in the 

non-leptonic case hq can be driven negative from a positive initial 

value provided the Yukawa couplings are sufficiently large. 

We find that if we start With initial hi satisfying the stability 

conditions, eq.cA.4). then A3 , h,, and & are always small (L. 1 ) at 

the weak scale. This can be understood from the renormalization group 

equations. In both of these schemes a,, and or,, are zero. Hence, 

neglecting contributions of the form (gauge coupling)4, which is always 

small, we see that the system of equations may be written: 
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= A (AL i fz,j,; 1. 8,~) ,*‘ 
5 

(8) 

which has a fixed point at h,= A+= hs*O. Hence, in the “semi-leptonic” 

scheme these parameters behave like 2, in the preceding case. 

The masses of the neutral scalars can be accurately computed in 

terms of 
v2’vl since m, and m2 are insensitive to hs , A,, , and h, 

provided they are small. The results are similar to those presented in 

Fig.(4). The ranges Of m, and m2 for each of the cases considered is 

presented in Table VIII. 

Since A+ and & do not attain fixed points we cannot predict the 

masses of the charged scalar or the neutral pseudoscalar. However, they 

are small in this case and we typically find “P-m, - 5CGev. for 

A,, A, -.04. 

Again, the masses are in interesting ranges though are not 

controlled by their fixed points to the extent they are in the 

nonleptonic schemes. 

(3) Leptonic Coupling (III,VI,VII,VIII,IX,X) 

Presently one or both of the Higgs doublets are coupled to fermiOnS 

with negligible Higgs-Yukawa couplings. Unlike the previous two cases 

A, cannot be driven negative at low energies if it is poSitive at MX. 

In case X in which both 4 and 4’ are not coupled to heavy fermions we 

find that at some scale h, (taken to be initially negative) starts to 
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increase in magnitude. When A, is sufficiently large in magnitude it 

causes 4 and A, to become negative and the system becomes 

unstable. The energy at which this occurs depends upon the initial 

values in a sensitive way. 

In the other cases in which only Q: is coupled to heavy fermions we 

find that A, reaches its fixed point but h, , h, , A+, and ha do not. 

As in the semi-leptonic case h,, h, and A, tend to be small. The 

system will not become unstable as in case X provided the fermions are 

sufficiently heavy. The resulting masses of the Higgs bosons are not 

determined in these cases. 

Here we encounter another phenomenon. It is possible to find 

initial configurations of the Ai at MX satisfying eq.(A. 4) which 

descend to lower energy scales at which eq.(A.II) become violated. A 

typical initial configuration is evolved in Fig.(5). 

Here we see that h,, x2 and h 
3 

monotonically decrease while the 

negative A,, increases and eventually turns over to decrease again. h, 

if initially positive monotonically increases. We quickly reach an 

energy scale at which eq.(A.4a) is no longer satisfied. Here we should 

presumably halt the evolution since the symmetry breaking will be 

associated with this scale. If, however, we continue the evolution we 

eventually reach a scale at which either A, or A, become negative, and 

subsequently the couplings blow up. 

We have not found cases in which the couplings begin at MX 

satisfying eq.(A.4), becoming arbitrarily large at low energies while 

always satisfying the stability conditions of eq.(A.4). We therefore 

conjecture that the theory always becomes quartically unstable before 

becoming a strongly interacting theory. 
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One can presumably tune the ,initial values at MX so that the 

cross-over to quartic instability occurs at MW. The theory would still 

be perturbative at that scale and the electroueak interactions become 

broken for massless Scalars. Such a mechanism might provide an 

alternative to technicolor schemes, but seems somewhat contrived to us. 



-22- FERMILAB-Pub-85156-T 

Appendix 

We discuss in this appendix the properties of the two Higgs doublet 

potential. Though much of this has been discussed previously (‘) we 

include it here for convenience. 

The most general renormalizable, SU(2)XU(l) invariant, and 

reflection invariant potential is: 

V(#,,QJ = /uu:Q1+$ +/d: &Y2 + +wfJ’ + -$w~z~ 

t h,(4,+4,)&%) + A, l~4’9f 

(A.11 

where #,,-( $,+, +,,“) and $$ =( 4’+, #a”) denote the two scalar doublets with 

weak hypercharge +l. It is necessary to impose the discrete symmetry 

4, *-#, and #Z--9! (together with appropriate transformations for 

the fermions depending upon the form of the Higgs-Yukawa interactions) 

in order to avoid flavor-changing neutral couplings. 

All coupling constants are real. More generally, the last term in 

V( 4( I 42) can be written as: 

+q@#$ + + &+4:) (A.21 

However, the phase of Ag can be absorbed into the relative phase 

between #, and 42. Consequently, hs can be chosen real without loss 

of generality. As explicitly breaks a Peccei-Quinn U(1) symmetry 

giving a mass to the pseodoscalar Riggs boson. 
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The requirement that the the potential energy of the vacuum be 

bounded belOW necessarily implies the following conditions in 

tree-approximation: 

A, 7 0 

(A. 3) 
A, 7 0 

and: 

JIG> -a3 + JAbI + l&I if ;\* 4 0 

J-XX> -x3- A, +I51 if O<A+~li\rl 

J-G p-h if last -L a4 

(A.44) 

(A.4b) 

(A.4c) 

In our numerical integration of the renormalization group equations 

the initial values for the ,%i must be chosen to satisfy these stability 

constraints; these constraints should be respected by the fixed points 

as well. This is due to the fact that these are quartic constraints and 

if the potential is unstable at My with respect to these constraints, 

then it will be unstable at all lower scales. Moreover, should the 

potential develop a quartic instability at low energies the vacuum 

expectation values will grow until the stable minimum is Pound at a 

higher energy. 

Spontaneous breaking of symmetry occurs when /,a and paa are 

negative. The case of present interest is when both $j and 4z develop 

vacuum expectation values. In this case the vacuum will conserve 

electric charge provided A,,40 and eq.(A.lla) is the relevant stability 
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condition. Indeed, we seek a reason why electric charge conservation 

should be favored in these models. The vacuum expectation values for $ 

and #z are: 

09 = j+ ,” iI1 ) <(p,>=j+ ; ( 1 2 (A. 5) 

where Y 2 , and v2 are real and v, + v2* = v 2 = (246 Gev)‘. Consistency 

requires Age 0 (explicitly one minimizes the potential allowing a 

relative phase between (4) and <dz>. One finds that 444,> and CA> should 

be relatively real if &.L 0). 

It is easy to calculate the masses of the physical particles after 

symmetry breaking. There is a total of four: one charged (Hf 1, one 

neutral pseudoscalar (PI, and two neutral scalars (H,,H~). The particles 

and their mass* are: 

/-/’ = - QI 5s$ t 4y cq , mf = +[&+A*)“’ 
(A.ba) 

-j+T = - L-m4feE+3 t Im4,0cn/ , Mp’= -ArvZ 

(A.6b) 
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j+H2 = - ue4 oSi.ta t u&m , m: = $-y-V’ (A.64 

where: 

f &%a = 7/t : 2A cw*/3 
03 t a+ + h,) sin 2j3 

(A.71 

(A.f3) 
and 

-+ [(A,&+ -,az&2/3)2t IA~w~5f~*2~1 
Y 

(A.91 

The massless Goldstone bosons that beCome the longitudinal components of 

W and 2 are: 

Gf = 4=cnp t 6’ SAA/3 
(A. 10) 

&GY = In fcq3 t I,$“ri*p 
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Table I. Values of nl, n2 and n3 for various cases considered. 

NH = 1 NH = 2 

"3 = 7.0 "3 = 7.0 

N=3 "2 = 3.1667 
,"2 = 3.0 

"1 = 6.8333 "1 = 7.0 

"3 = 5.6667 "3 = 5.6667 

N=4 
"2 

= 1.8333 
"2 

= 1.6667 

"1 = 9.0556 "1 = 9.2222 

"3 = 4.3333 "3 = 4.3333 

N=5 "2 = 0.5 
"2 = 0.3333 

"2 = 11.2778 "1 = 11.4444 



Table II. Values of the parameters a 
renormailzatlon group equations of k 

(k=l,Z,...,ll) in the 
he Yukawa couplings for 

various cases. 

NH=1 NH=2 

I II III IV v VI VII VIII IX x 

a1 1 1 1 1 - 1 - 1 - 1 - 

a2 11 0 1 - 0 - 0 - 0 

a3 10 0 1 - 0 - 1 - 0 - 

a4 -i ; -$ -; ; --g - - _ _ 

a5 1 1 0 1 0 - 0 - - - - 

a6 1 1 1 1 1 - 1 - - - - 

a7 1 0 1 1 0 - 1 - - - -- 

a8 -s ; -; -$ $ 0-g 0 0 - - 

a9 1 0 0 1 0 0 0 1 0 - - 

al0 1 0 1 1 0 0 1 0 0 -.- 

all 1 1 1 1 1 1 1 1 1 - - 



Table III. Values of the parameters a, (1=1,2,...,23) In the 
renormallzatlon group equations of the scalar quartlc couplings 
for various cases. 

NH=1 NH=2 

I II III IV v VI VII VIII IX x 

e1 1 0 0 1 0 0 0 1 0 1 0 

a2 1 0 1 1 0 0 1 0 0 0 0 

u3 1 1 1 1 1 1 1 1 1 0 0 

u4 1 0 0 1 0 0 0 1 0 1 0 

a5 1 0 1 1 0 0 1~0 0 0 0 

a6 1 1 1 1 1 1 1 1 1 0 0 

u7 - 11 0 0 10 0 0 0 0 

ug - 1 0 0 1 0 0 0 0 0 cl 

a9 - 0 0 0 0 0 0 0 0 0 0 

alo - 1 1 0 0 1 0 0 0 0 0 

al1 - 1 0 0 10 o-o 0 0 0 

al2 - 0 0 0 0 0 0 0 0 0 0 

al3 - 1 1 1 0 1 0 1 0 1 0 

cdl4 - 1 1 1 1 0 1 0 0 0 0 

al5 - 1 1 1 1 1 1 1 1 0 0 

al6 - 1 0 0 1 0 0 0 0 0 0 

lY17 - 1 1 1 0 1 0 1 0 1 0 

U18 - 1 1 1 1 0 1 0 0 0 0 

al9 - 1 1 1 1 1 1 1 1 0 0 

a2o - 1 0 0 1 0 0 0 0 0 0 

a21 - 1 1 1 0 1 0 1 0 1 0 

“22 - 1 1 1 1 0 1 0 0 0 0 

a23 - 1 1 1 1 1 1 1 1 0 0 



Table IV. Fixed point values of the scalar quartic couplings In 
the two-Hlggs model: Coupling Scheme 1. 

mt (G-W x1 X2 x3 x4 1151 

0 0.88 0.71 0.75 -1.11+0.03 0.062?0.046 

N=4 50 0.84 0.71 0.73 -1.08?0.03 0.058+0.042 

172 0.69 0.77 0.45 -0.60 0.010+0.006 

0 0.60 0.47 0.51 -0.66 0.007+0.004 

N=5 50 0.57 0.48 0.49 -0.64 0.007+0.004 

135 0.49 -0.50 0.37 -0.46 0.003+0.002 



Table V. Fixed point values of the scalar quartic couplings in 
the two-Hlggs model: Coupling Scheme IV. 

mt (GeV) x1 x2 I3 x4 1x51 

0 0.85 0.82 0.83 -1.3OfO.03 0.076+0.042 

N=4 50 0.81 0.83 0.82 -1.26fO.03 0.070*0.038 

172 0.68 0.90 0.50 -0.68?0.01 0.011+0.004 

0 0.59 0.57 0.58 -0.78 0.009+0.003 

N=5 50 0.56 0.57 0.56 -0.76 0.008+0.003 

135 0.48 0.60 0.42 -0.53 0.003+0.001 



Table VI. Fixed point masses (in GeV) of the physical Higgs 
particles: Coupling Scheme I. 

"t m ml m2 mP 

0 188 190-231 O-105 “61” 

N=4 50 186 188-225 O-105 "59" 

172 136 164-216 O-131 "25" 

0 142 144-191 O-106 “21” 

N=5 50 140 143-186 O-105 "21" 

135 118 133-174 O-110 “13” 



Table VII. Fixed point masses (in GeV) of the physical Higgs 
particles: Coupling Scheme IV. 

-~ 

0 204 204-227 o-94 "68" 

N=4 50 201 201-224 o-97 "65" 

172 145 171-233 o-133 "26" 

0 155 155-189 O-106 "23" 

N=5 50 152 153-186 O-104 "22" 

135 127 140-191 o-113 "13" 



Table VIII. Range of the neutral scalar masses In the "semi- 
leptonlc" coupling schemes [II and V) assuming mt=O. 

II V 

N=4 N=5 N=4 N-5 

q(GeV) 148-244 127-192 167-247 144-206 

m2(GeV) O-146 O-127 O-165 O-142 
4 
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Figure Captions 

Fig. 1: 
Flow of h and g, towards fixed points in the standard one 
Higw doublet model. Open circles denote initial points. 
Crosses denote final fixed points. 

Fig. 2: 
Relation between the Higgs mass and the t-quark mass in the 
standard one Higgs model. 

Fig. 3a: 
Flow of h, and A, towards the fixed point. Coupling scheme I 
with four generations. The initial conditions on the gauge , 
Yukawa, and the other scalar quartic couplings are the same for. 
all cases. Initial points of h, and ,A, are indicated by open 
circles. The final fixed point is indicated by a cross. Solid 
circles along the curve label energy steps (see text for 
details) to demonstrate how fast the fixed point is reached. 
Fixed points fork the Xi are X,=0.66, L-0.75, As-O.45 

A, A.57, h,=0.02. 

Fig. 3b: 
Flow of A, and A, towards the Pixed point. The 
conditions are the same as in Fig. 3a. Fixed points 

h; are the same as in Fig. 3a except that As --, 
0.04. 

Fig. 3~: 
Flow of A, and A, towards the fixed point. 
conditions are the same as in Fig.3a. Fixed points 

Initial 
for the 

hi remain the same as in Fig. 3a,except that A5* 0.02 - 
0.07. 

initial 
for the 
0.02 - 

Fig. be: 
Masses of the neutral scalar Higgs particles ( m,,, ) as a 
function of (v,/v,)* in coupling scheme I. Solid lines denote 
N = 4; dashed lines denote N = 5. Mass of the t-quark is 
assumed to be small (less than 50 Gev ). 

Fig. 4-b: 
Same as in Fig. 4a, but for coupling scheme IV. 

Fig. 5: 
A,...- ha are plotted vs. log (energy in Gev) in the leptonic 

coupling scheme X to demonstrate how the singularity occurs for 
a specific case. The dotted line indicates the energy scal$,fst 
which the h; become unstable, which in this case is7 - 10 
Cev. The singularity occurs only when we reach - 10 Gev. 
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